
West Virginia

University

Using Static Code Analysis

Tools for Detection of Security

Vulnerabilities

Katerina Goseva-Popstajanova &

Andrei Perhinschi

Lane Deptartment of Computer Science

and Electrical Engineering

West Virginia University

Morgantown, WV

West Virginia

University

Acknowledgements

 This material is based upon work supported

in part by NASA IV&V, Fairmont, WV

We thank Keenan Bowens, Travis Dawson, Roger

Harris, Joelle Loretta, Jerry Sims and Christopher

Williams for their valuable input and feedback.

West Virginia

University

Information assurance and IV&V

 NASA develops, runs, and maintains many

systems for which one or more security attributes

(i.e. confidentiality, integrity, availability,

authentication, authorization, and non-repudiation)

are of vital importance

 Information assurance and

 cyber security have to be

 integrated in the traditional

 verification and validation

 process

West Virginia

University

Static code analysis

 Static analysis of source code provides a scalable

method for code review

 Tools matured rapidly in the last decade

• from simple lexical analysis to more complex and

accurate techniques

 In general, static analysis problems are

undecidable (i.e. it is impossible to construct an

algorithm which always leads to a correct answer)

• False negatives

• False positives

West Virginia

University

To examine the ability of static

code analysis tools to detect

security vulnerabilities

West Virginia

University

Approach

 Surveyed the literature and vendor provided

information on the state-of-the-art and practice of

static code analysis tools

• 15 commercial products

• 8 tools licensed under some kind of open source license

 Selected three tools for detailed evaluation

• To fully use the provided functionality all three tools

require a build to be created or at least the software under

test to be compiled

 Performance was evaluated using

• Micro-benchmarking test suites for C/C++ and Java

• Three open source programs with known vulnerabilities

West Virginia

University

EVALUATION

BASED ON THE

JULIET TEST

SUITE

West Virginia

University

Juliet test suite

 Micro-benchmarking suite which covers large

number of CWEs

• Each CWE (Common Weakness Enumeration)

represents a single vulnerability type

 Created by NSA and made publicly available at the

NIST Web site

 C/C++ suite (version 1.1)

• 119 CWEs

• 57,099 test cases

 Java suite (version 1.1.1)

• 113 CWEs

• 23,957 test cases

West Virginia

University

Juliet test suite

 This presentation is focused on the CWEs covered

by all three tools

• 22 common C/C++ CWEs among the three tools

(~21,000 test cases)

• 19 common Java CWEs among the three tools (~7,500

test cases)

 Two of the tools covered significantly more CWEs

• 90 C/C++ CWEs (~34,000 test cases)

• 107 Java CWEs (~16,000 test cases)

• Results were similar to the ones presented here

West Virginia

University

Automatic assessment

Run each tool on

the Juliet test suite

Transform tool’s

output in a common

format

Parse the output & compute

the confusion matrix

Parse each CWE

directory & assemble a

list of test cases

West Virginia

University

Confusion matrix & metrics

Reported

vulnerability
No warning/error

 reported

Actual
vulnerability

True Positives
(TP)

False Negatives
(FN)

No vulnerability
(good function/method)

False Positives
(FP)

True Negatives
(TN)

% of functions that are classified correctly

Probability of detecting a vulnerability (recall)

Probability of misclassifying a good function

as a bad function (false alarm)

How close is the result to the

ideal point (pf, pd)=(0,1)

FNTP

TP
PD




FPTN

FP
PF




2

)1()0(
1

22 PDPF
Balance




TPFPFNTN

TPTN
Accuracy






West Virginia

University

Accuracy: C/C++ CWEs

The three

tools have

similar

performance

with Tool C

performing

slightly better

Tool A: Range [0.27,0.77], Average = 0.59, Median = 0.63

Tool B: Range [0.50, 0.87], Average = 0.67, Median = 0.64

Tool C: Range [0.41,1], Average = 0.72, Median = 0.64

West Virginia

University

Recall: C/C++ CWEs

Each tool has 0%

recall for some

CWEs

For some CWEs

(i.e.,197, 391,

478, 480, 482,

835) all three

tools have 0%

recall

Accuracy on its

own is not a good

metric for tools’

performance

Tool A: Range [0, 1], Average = 0.21 , Median = 0.14

Tool B: Range [0, 0.87], Average = 0.26, Median = 0.10

Tool C: Range [0,1], Average = 0.39, Median = 0.42

West Virginia

University

Probability of false alarm: C/C++ CWEs

Tool C has

noticeably

lower false

positive rate

than Tools A

and B

Tool A: Range [0, 0.94], Average = 0.18, Median = 0.02

Tool B: Range [0, 0.52], Average = 0.09, Median = 0.01

Tool C: Range [0,0.94], Average = 0.07, Median = 0

West Virginia

University

Balance: C/C++ CWEs

Balance values

for many CWEs

were around

30%, which

indicates poor

overall

performance

Tool C

performed

slightly better

than the other

two tools

Tool A: Range [0.28, 0.65], Average = 0.39, Median = 0.29

Tool B: Range [0.29, 0.87], Average = 0.46, Median = 0.36

Tool C: Range [0.29,1], Average = 0.53, Median = 0.46

West Virginia

University

ROC squares for C/C++ CWEs

Ideal result

(pf, pd) = (0, 1)

Not many points are close to the ideal (0,1) point

Tool C has noticeably lower false alarm rate

For each tool there are multiple CWEs at the (0,0) point

West Virginia

University

Accuracy: Java CWEs

Accuracy values for

Java CWEs vary

somewhat more than

those for C/C++

CWEs

All three tools attain

a maximum accuracy

value for several

CWEs

Tool C seems to be

performing slightly

better than the other

two tools

Tool A: Range [0.41,1], Average = 0.67, Median = 0.63

Tool B: Range [0,1], Average = 0.60, Median = 0.63

Tool C: Range [0.52,1], Average = 0.73, Median = 0.67

West Virginia

University

Recall: Java CWEs

Again, there were

CWEs (i.e., 486

and 489) for which

none of the tools

correctly flagged

any flawed

constructs

However, not as

many as in case of

C/C++ test suite

Tool A performed

slightly better than

the other two tools

Tool A: Range [0,1], Average = 0.49, Median = 0.50

Tool B: Range [0,1], Average = 0.35, Median = 0.18

Tool C: Range [0,1], Average = 0.36, Median = 0.17

West Virginia

University

Probability of false alarm: Java CWEs

Similar trend as in

case of the C/C++

false alarm values

Tool C performed

better than the other

two tools; Tool A

performed slightly

better than Tool B.

Tool A: Range [0,0.94], Average = 0.24, Median = 0

Tool B: Range [0,1], Average = 0.25, Median = 0.03

Tool C: Range [0,0.47], Average = 0.05, Median = 0

West Virginia

University

Balance: Java CWEs

Similar trend as in

case of C/C++

balance values

For many CWEs

balance values

were around 30%,

which is an

indicator of overall

poor performance

Tools A and C

appear to perform

slightly better than

Tool B

Tool A: Range [0.29,1], Average = 0.50, Median = 0.34

Tool B: Range [0,1], Average = 0.43, Median = 0.34

Tool C: Range [0.29,1], Average = 0.52, Median = 0.41

West Virginia

University

ROC squares for Java CWEs

Ideal result

(pf, pd) = (0, 1)

Not many points are close to the ideal (0,1) point

Tool C has noticeably lower false alarm rate

For each tool there are multiple CWEs at the (0,0) point

West Virginia

University

CWE/SANS top 25 most dangerous

software errors

C/C++
 CWE 78 OS Command Injection

• Tool A had the highest recall (54%), but also very high

probability of false alarm (89%)

• Tools B and C performed poorly, with recall values

around 4% and 0% respectively

 CWE 134 Uncontrolled Format String

• Tool C was the most successful (with recall close to

79%), but with high probability of false alarm (i.e., 48%)

• Tools A and B had lower recall values (i.e., around 30%

and 38%, respectively)

West Virginia

University

CWE/SANS top 25 most dangerous

software errors

Java
 CWE 190 Integer Overflow

• Tool B had recall of around 27%, with relatively high false

alarm rate of almost 22%

• Neither Tool A nor Tool B detected CWE 190 (i.e. they

had 0% recall)

West Virginia

University

EVALUATION

BASED ON REAL

PROGRAMS

West Virginia

University

Evaluation based on real software

 Three open-source software applications

• Gzip

• Dovecot

• Apache Tomcat

 Older version with known vulnerabilities

 More recent version with the same vulnerabilities

being fixed was used as an oracle

 A total of 44 known vulnerabilities in the three

applications, mapped to 8 different CWEs

West Virginia

University

Gzip: Basic facts

 Popular open source archiving tool

 Written in C

 ~8,500 LOC

 Vulnerable version: 1.3.5 with 4 known

vulnerabilities

 Version with fixed vulnerabilities: 1.3.6

West Virginia

University

Gzip-1.3.5 version with known vulnerabilities

Tool Warnings Number of

detected

vulnerabilities

Tool A 112 1 out of 4

Tool B 36 0 out of 4

Tool C 119 1 out of 4

Gzip-1.3.6 version with fixed vulnerabilities

Tool Warnings Number of

reported

vulnerabilities

Tool A 206 1 out of 4

Tool B 125 0 out of 4

Tool C 374 1 out of 4

True positive

False positive

Gzip: Results

West Virginia

University

Dovecot: Basic facts

 IMAP/POP3 server for Unix-like operating systems

 Written in C

 ~280,000 LOC

 Vulnerable version: 1.2.0 with 8 known

vulnerabilities

 Version with fixed vulnerabilities: 1.2.17

West Virginia

University

Dovecot-1.2.0 version with known vulnerabilities

Tool Warnings Number of

detected

vulnerabilities

Tool A 8,263 0 out of 8

Tool B 538 0 out of 8

Tool C 1,356 0 out of 8

Dovecot-1.2.17 version with fixed vulnerabilities

Tool Warnings Number of

reported

vulnerabilities

Tool A 8,655 0 out of 8

Tool B 539 0 out of 8

Tool C 1,293 0 out of 8

Dovecot: Results

West Virginia

University

Tomcat: Basic facts

 Open source Java Servlet and JavaServer Pages

implementation

 Written in Java

 ~4,800,000 LOC

 Vulnerable version: 5.5.13 with 32 known

vulnerabilities

 Version with fixed vulnerabilities: 5.5.33

West Virginia

University

Tomcat: Basic facts

 Due to its much greater complexity, the majority of

Tomcat’s vulnerabilities span several files and/or

locations within each file

• 4 out of 32 vulnerabilities occur at one location

within one file

• 9 out of 32 vulnerabilities occur at multiple

locations within one file

• 19 out of 32 vulnerabilities occur in multiple files

 We consider a true positive found if at least one of

the file(s)/location(s) are matched by a tool

West Virginia

University

Tomcat-5.5.13 version with known vulnerabilities

Tool Warnings Number of

detected

vulnerabilities

Tool A 12,399 7 out of 32

Tool B 12,904 3 out of 32

Tool C 20,608 5 out of 32

Tomcat-5.5.33 version with fixed vulnerabilities

Tool Warnings Number of

reported

vulnerabilities

Tool A 167,837 2 out of 32

Tool B 13,129 0 out of 32

Tool C 21,128 1 out of 32

True positives

False positives

Tomcat: Results

West Virginia

University

CONCLUDING REMARKS

West Virginia

University

Conclusions

 None of the three tools produced very good results

(i.e., high probability of detection (i.e., recall) and

low probability of false alarm)

 Tool C had the smallest false alarm rate among the

three tools (mean value of 7% for the common

C/C++ CWEs and 5% for the common Java CWEs)

 Some CWEs were detected by all three tools,

others by a combination of two tools or a single

tool, while some CWEs were missed by all three

tools

West Virginia

University

Conclusions

 The results of the evaluation with real open source

programs were consistent with the evaluation

based on the Juliet test suite

• All three tools had high false negative rates (i.e. were not

able to identify majority of the known vulnerabilities)

• Tool A outperformed the other two tools on the application

implemented in Java

 Static code analysis cannot be used as an

assurance that the software is secure. Rather, it

should be one of the techniques used, in addition

to other complementary techniques

